

SRI RAMAKRISHNA

COLLEGE OF ARTS & SCIENCE (Autonomous)

Formerly SNR Sons College

S.N.R.CollegeRoad, Coimbatore-641006, TamilNadu, India. "Scheme of Examination along with Distribution of Marks and Credits" CBCSPATTERN

UNDERGRADUATEPROGRAMMES

B.Sc. Electronics and Communication System Degree Course

(Forthestudentsadmittedduringtheacademicyear2018-2019andonwards)

Part	Study Components: Course Title with Course code	CIA	Exam	Descriptive Theory	Comprehen sive Exam Total	Total	Credits
	S	SEMEST	TER I				
I	Language:18T01Tamil-I/18H01Hindi-I/18F01French-I/18M01Malayalam-I/18A01 Arabic - I	30	-	70	70	100	3
II	18E01: English for Communication–I	30	-	70	70	100	3
III	18EC101 : Basic Electronics	30	20	50	70	100	4
III	18EC102 : Electric Circuits and Network Analysis	30	20	50	70	100	4
III	18EC103: Practical I: Components and Network Analysis	30	-	-	70	100	3
III	18EC104: Allied I: Mathematics–I	30	20	50	70	100	3
IV	18VE01: Value Education	100	-	-	-	100**	1
IV	18CPE01: PACE -I	-	-	-	100	100**	1
IV	18ECJC1: JOC - I	-	-	-	-	-	1\$
	S	EMEST	ER II				
I	Language:18T02Tamil-II/18H02Hindi- II/18F02French-II/18M02Malayalam- II/18A02 Arabic - II	30	-	70	70	100	3
II	18E02:English for Communication–II	30	-	70	70	100	3
III	18EC201 :Electronic Devices	30	20	50	70	100	4
III	18ECP01: Digital Electronics and Lab	50	-	50	100	100	5
III	18EC202: Practical II: Electronic Devices	30	-	-	70	100	3
III	18EC203: Allied II: Mathematics–II	30	20	50	70	100	3
IV	18ES01: Environmental Studies	100	-	-	-	100**	1
IV	18CPE02: PACE - II	-	-	-	100	100**	1
IV	18ECJC2: JOC - II	-	-	-	-	-	1\$

	SEMESTER III						
III	18EC301: Electronic Principles and Circuits	30	20	50	70	100	4
III	18EC302: Practical III: Electronic Principles and Circuits	15	-	-	35	50	2
III	18EC303: Practical IV: Principles of Electronic Communication	15	_	-	35	50	2
III	OPENELECTIVEI	30	20	50	70	100	3
III	18EC304: Allied III: Computer Programming [C &C++Programming]	15	-	-	35	50	2
III	18EC305: Allied Practical I: Computer Lab-I	15	-	-	35	50	2
III	18EC306:Skill Based Course–1: Principles of Electronic Communication	30	20	50	70	100	3
IV	18BT01:BasicTamilI 18AT01: Advanced Tamil I	100	-	-	-	100**	1\$
IV	18CPE03: PACE - III	-	-	-	100	100**	1
IV	18ECJC3: JOC - III	-	-	-	-	-	1\$
	S	EMEST	ER IV				
III	18EC401: Instruments and Measurements	30	20	50	70	100	3
III	18ECP02: Electronic Design Automation and Lab	50	-	50	70	100	5
III	18EC402: Practical V: Integrated Circuits	30	-	-	70	100	3
III	ELECTIVE I	30	20	50	70	100	4
III	18EC403: Allied IV: Computer Programming II Visual Basic	15	_	-	35	50	2
III	18EC404: Allied Practical II: Computer Lab II Visual Basic Programming	15	-	-	35	50	2
III	18EC405: Skill Based Course – 2: ICs and their Applications	30	20	50	70	100	3
IV	18BT02: Basic Tamil II 18AT02: Advanced Tamil II	100	-	-	-	100**	1\$
IV	18CPE04: PACE - IV	-	-	-	100	100**	2
IV	18ECJC4: JOC - IV	_	_	-	-	-	1\$

	SE	MESTE	R V				
III	18EC501 : Wireless and Network Communication	15	-	-	35	50	2
III	18EC502 : 8051Microcontroller	30	20	50	70	100	4
III	18EC503: Practical VI: Industrial and Power Electronics	30	-	-	70	100	4
III	18EC504: PracticalVII:8051Microcontroller	30	-	-	70	100	4
III	18ECP03: Bio Medical Instrumentation and Lab	50	-	50	50	100	5
III	OPENELECTIVEII	30	20	50	70	100	3
IV	18EC505: Skill Based Course–3: Industrial and Power Electronics	30	20	50	70	100	3
IV	18CPE05: PACE-V	1	-	-	100	100**	2
IV	18ECJC5: JOC - V	1	-	-	-	-	1\$
	SE	MESTE	R VI				
III	18EC601: Modern Communication System	15	-	-	35	50	2
III	18ECP04: VHDLProgramming and Lab	50	-	50	50	100	5
III	18EC602 : Practical VIII : Arduino Programming	30	-	-	70	100	3
III	18EC603 : Practical IX : Modern Communication system	30	-	-	70	100	3
III	ELECTIVE II	30	20	50	70	100	4
III	18EC604: Skill Based Course-4: Arduino Programming	30	20	50	70	100	3
III	18EC605:Project and Viva Voce	80	_	-	20	100	5
III	Extension Activities: 18NS01NSS/18NC01NCC/18SP01SPO RTS/18YR01 YRC/18RR01 RRC/ 18SI01 SIS#	100	-	-	-	100**	1

\$\$ExtracreditcoursesforthecandidateswhooptedotherlanguagesinPart–I #N o Comprehensive Examinations. Only Continuous Internal Assessment (CIA) @No Continuous Internal Assessment (CIA).Only Comprehensive Examinations.

^{**}Marks will not be included in CGPA calculations.

^{\$} Extra credit courses

	18ECE01	Audio Video Communication
Elective-I	18ECE02	Material Science
	18ECE03	Mobile Communication
	18ECE04	Fundamentals of Embedded Systems
Elective-II	18ECE05	Robotics
	18ECE06	Telecommunication Switching and Networks

List of Open Elective papers offered by the dept.			
Open Elective–I Mobile phone servicing			
Open Elective–II	Advanced PC Hardware		

Summary							
Part	Subject	Papers	Credit	Total credits	Papers	marks	Total marks
Part I	Languages	2	3	6	2	100	200
Part II	English	2	3	6	2	100	200
	Core	21	78	92	22	2000	2400
	Allied	6	14	92	6	400	2 4 00
Part III	OPEN ELECTIVES	2	3	6	2	100	200
	Electives	2	4	8	2	100	200
	Skill Based	4	3	12	4	100	400
							3600
	Lang.	2	1	2\$	2	100	200**
	PACE	3	1	3	. 5	100	500**
Part IV	THEE	2	2	4	J	100	300
	EVS&VE	2	1	2	2	100	200**
Part V	@Extension	1	1	1	1	100	100**
	Total			140			

\$-Extra credit courses

CIA: Continuous Internal Assessment

CE: Comprehensive Examination

**-NOTINCLUDEDINTOTALMARKS

Total Marks for the Programme: 3600 Total Credits for the Programme: 140

Dr. G.SENTHILKUMAR Chairman,
Board of studies in Electronics
SRI RAMAKRISHNA
COLLEGE OF ARTS & SCIENCE (Autonomous)
Formerly SNR Sons College, Coimbatore.

18EC101 BASIC ELECTRONICS

COURSE OBJECTIVE

- ❖ To become familiar with fundamentals of electronic components.
- ❖ To learn to use common electronic components.
- ❖ To design electronic circuits to perform realistic tasks.

Semester	Ι
Credit	4
Max.	CIA -30
Marks	CE -70
	TOT =100

UNIT I: RESISTORS [12 Hrs]

Resistors Specifications - Classifications of Resistors, Linear Resistors: Fixed Resistors (Carbon Composition, Thin Film, Thick Film, Wire Wound) - Variable Resistors (Wire Wound, Potentiometer, Trimmers), Non Linear Resistors: Thermistors, Photo Resistors, Varistors, Resistance designation-Colour Coding of Resistors- Detects in Resistors - Resistors in Series and parallel Combinations

UNIT II: INDUCTORS [12 Hrs]

Inductance – Inductors- Types of Inductors: Fixed Inductors: - Air Core Inductors Variable Inductors: - Variable Ferrite Core Inductor – Self Inductance of a coil – Mutual Inductance of Coil – Inductors in Series and Parallel with Mutual Inductance – Inductive Reactance – Energy Stored by an Inductor – Coil and Core Losses – Q Factor of Inductor – Factors Affecting Inductance of a Coil – Troubles in Coil.

UNIT III: CAPACITORS [12 Hrs]

Capacitance – Capacitors – Capacitor Specifications – Capacitor Action – Types of Capacitor: Fixed Capacitors: Electrolytic, Ceramic, Mica, Paper Variable Capacitors:- Gang Capacitors, Trimmer & Padders, Capacitors in Series and Parallel – Factors affecting the Capacitor – Capacitive Reactance – Troubles in Capacitors

UNIT IV: VOLTAGE AND CURRENT SOURCES

[12 Hrs

Batteries – Internal Resistance of a Sources – Concept of Voltage Source – Ideal Voltage source - Practical Voltage Source – VI Characteristics of Practical Voltage Source - Procedure for Determining Internal Resistance – Ideal Current Source - Practical Current Source - Equivalent Between Voltage Source and Current Source – Conversion of Voltage, Current Source

UNIT V: CIRCUIT CONTROL AND PROTECTIVE DEVICE

[12 Hrs]

Switches – Switching Action – Types of Switches (SPST, SPDT, DPST, DPDT, Toggle Switch, DIP, Rotary Switch) – Analog and Digital Switches - Fuses Rating, Connectors, Insulators, Circuit Breaker, Relays (Electromagnetic Relay)

COURSE OUTCOME

On completion of this course the students will be able to Total Periods: 60 Hrs

- Identify electronic components
- ❖ Differentiate and demonstrate the voltage and current source.
- ❖ Put into practice and use the electronic components

TEXT BOOKS:

- 1. R.S.Sedha, "A Text Book of Applied Electronics", S. Chand & Company Ltd, RevisedI Edition, 2008 (Unit I, II, III & V)
- 2. S.P.SHARMA, "Basic Radio and B/W, Colour Television", Tata Mcgraw Hill Publishing, 5th Edition2007 (Unit IV)

REFERENCE BOOKS:

- 1. Bernard Grob, "Basic Electronics" Mc Graw Hill, 10th Edition, 2008.
- 2. S.Salivahanan, N.Sureshkumar, A. Vallavaraj, "Electronic Devices and circuits", Tata Mc Graw Hill, 2nd Edition 2011.

Prepared by

(Dr. V. Sidharthan)

Approved by

18EC102 ELECTRIC CIRCUITS AND NETWORK ANALYSIS

Semester I Credit 4 Max. CIA -30 Marks CE -70 TOT =100

COURSE OBJECTIVE

- ❖ To enable the students to learn the basic concept of various electric circuits and to analyze different network theorems.
- ❖ To grab the knowledge of transient response of series and parallel AC circuits.

UNIT I: ELECTRICITY [12 Hrs]

Introduction – Electric field - potential and potential difference, Unit of potential difference – Electric current – Unit of Electric current – Difference between electric charge and current - Electron and conventional current flow - Electrical resistance - Temperature coefficient of electrical resistance

UNIT II: ELECTRICAL ELEMENTS

[12 Hrs]

Introduction – ohms law – Kirchhoff's current law – Kirchhoff's Voltage law – Method of Branch current, Node voltage method, Method of Mesh current.

UNIT III: ELECTRICAL CIRCUITS

[12Hrs]

Series circuit – resistance in series- series I.R voltage drops – series voltage divider – total power in a series circuit – opens in a series circuit – shorts in series circuit - Parallel circuit- resistance in parallel circuit – equivalent resistance of a two branched circuit – total power in a parallel circuit- – opens in a parallel circuit – shorts in parallel circuit – Series parallel circuit.

UNIT IV: NETWORK THEOREMS

[12 Hrs

Thevenin's theorem – Norton's theorem – Conversion of Thevenin and Norton – Super position theorem – Millman's theorem – Star to Delta and Delta to Star conversion – Maximum power transfer theorem.

UNIT V: AC CIRCUITS [12 Hrs]

AC Circuit with resistance alone – Circuit with XL alone – Circuit with XC alone – Series reactance and resistance – parallel reactance and resistance – Series parallel reactance and resistance – Real power – Series resonance circuit – parallel resonance circuit – Q-factor.

COURSE OUTCOME

On completion of this course the students will be able to Total Periods: 60

- Design simple electric circuits and to analyze the network theorems.
- ❖ Analyze various electric networks by using theorems.
- ❖ Develop the electric circuits applications by using the principles.

TEXT BOOKS:

1. R.S.Sedha, "A Text Book of Applied Electronics", S. Chand & Company Ltd, RevisedEdition, 2008 (Unit I-V)

REFERENCE BOOK:

1. Bernard Grob, "Basic Electronics" Mc Graw Hill, 10th Edition, 2008

Prepared by

Approved by

(Dr. G. Senthilkumar)

(Mr. K. Ashok Kumar)

18EC103 PRACTICAL – I: COMPONENTS AND NETWORK ANALYSIS

COURSE OBJECTIVE

- To understand the fundamental principles of circuit theory
- To make use of circuit laws and theorems and measuring the circuit parameters.

Semester	I
Credit	3
Max.	CIA -30
Marks	CE -70
	TOT =100

Any 10 Experiments:

- 1. Measurement of Amplitude, Frequency and phase difference using CRO
- 2. Resistor in Series, Parallel and Series-parallel
- 3. Voltage sources in series, parallel and series parallel
- 4. Voltage and Current divider
- 5. Verification of Ohm's law
- Verification of Kirchhoff's law
- 7. Verification of Thevenin's Theorem
- 8. Verification of Norton's Theorem
- 9. Superposition Theorem
- 10. Millman's Theorem
- 11. Verification of Star-Delta Conversion
- 12. Maximum power Transfer Theorems
- 13. Series resonance circuit
- 14. Parallel resonance circuit
- 15. Frequency response of R, L &C

COURSE OUTCOME

On completion of this course the students will be able to

- ❖ Apply the concept of basic circuit and theorems
- ❖ Simplify thecircuits using series and parallel equivalents and using Thevenin's and Norton's equivalent circuits.
- Design resonance circuits.

(Mr. K. Ashok Kumar)

❖ Use the oscilloscope for the display and measurements of signals.

Prepared by

Approved by

18EC104-MATHEMATICS-I

COURSE OBJECTIVE

To train the students on Matrices, Calculus, Laplace transforms and Fourier series.

Semester	I
Credit	3
Paper	Allied
Type	
Max.	CIA -30
Marks	CE -70
	TOT = 100

UNIT I MATRIX ALGEBRA

(8)

Basic concepts – Different types of matrices – Operation on matrices – Inverse of a matrix – Solving Simultaneous equations[Cramer's Rule] - Eigen values and Eigen vectors, Cayley Hamilton Theorem.

UNIT II DIFFERENTIAL CALCULUS

(10)

Basic Concepts – uv Method –u/v Method – Differentiation of implicit funtions – Successive differentiation- Increasing and Decreasing Functions – Maxima and Minima of Functions of two variables.

UNIT III INTEGRAL CALCULUS

(10)

Basics – Integration, Definite Integration – Integration by partial fraction and by parts, Reduction formula (simple problems).

UNIT IV LAPLACE TRANSFORMS

(9)

Definition of Laplace Transforms – Properties of Laplace transforms – Inverse of Laplace transforms – Application of Laplace Transforms to solve ordinary differential equations.

UNIT V FOURIER SERIES

(8)

Dirchlet's conditions – General Fourier series of the function in $(0,2\pi)$ and $(-\pi,\pi)$ – Odd function and Even function – Half range Fourier series .

COURSE OUTCOMES:

After the completion of the course, students are able to

- Formulate problems on Matrices
- Evaluate the problems on Differential Calculus
- Evaluate the problems on Integral Calculus
- Solve the ODE problems using Laplace transforms
- Explain the Fourier series and its applications.

Total Periods: 45

* Note: The Question paper consists 20% Theory and 80% Problems

TEXT BOOKS

- $1. \ \ Dr. \ S. \ Arumugam \ and \ A. \ Thangapandi \ \ Issac, "Modern \ Algebra", Scitech \ Publication, 2007. (\textbf{Unit I})$
- 2. S. Narayanan and T. K. M. Pillai, "Calculus Vol. I", Viswanathan Publishers, Reprint 2012. (Unit II)
- 3. S.Narayanan and T.K.M. Pillai, "Calculus Vol. II", Viswanathan Publishers, Reprint 2012. (Unit III)
- 4. Kandasamy. P, Thilagavathi. K "Mathematics for B.Sc Branch I Volume III", S. Chand and Company Ltd, New Delhi, 2004. (Unit IV)
- 5. Dr.P. Kandasamy, K. Thilagavathy, "Mathematics for B.Sc. Branch I , Volume IV, " S.Chand & Co. Edition 2005. ($\mathbf{Unit}\ \mathbf{V}$)

@ P - #

Mr.E.VIVEK (Course coordinator)

Heltz

Dr.HANNAH REVATHY F. (BOS Chairman)

18EC201 ELECTRONIC DEVICES

Semester	II
Credit	4
	-
Max. Marks	CIA -30
Marks	CE -70
	TOT =100

COURSE OBJECTIVE

- ❖ To enable the students to understand and gain the knowledge on semiconductor devices.
- To acquaint the students with construction, theory and characteristics of the electronic devices.

UNIT I: SEMICONDUCTOR

[12 Hrs]

Energy band structure: Valance and Conduction Band – Conduction in solids – Hole formation and its movement - Conductors – Insulators and Semiconductors Types of Semiconductor: Intrinsic semiconductor – Extrinsic semiconductor – N type semiconductor – P type semiconductor – Majority and Minority charge carriers – Mobile charge carries and immobile Ions – Drift – Diffusion

UNIT II: PN JUNCTION CHARACTERISTICS

[12 Hrs]

PN junction – Formation of depletion layer - Barrier voltage – Effect of temperature on barrier voltage – VI Characteristics of PN Junction Diode. Applications: Clippers, Clampers

UNIT III: SPECIAL DIODES

[12 Hrs]

Zener Diode – Zener diode as a voltage regulator – Backward diode – Varactor diode - Step recovery diode - Schottky diode - Tunnel diode – Gunn diode – IMPATT diode - PIN diode – LASER diode

UNIT IV: BIPOLAR JUNCTION TRANSISTOR

[12 Hrs]

Construction – Transistor biasing – Operation of NPN Transistor – Operation of PNP transistor, Types of configuration: CB configuration, CE configuration, CC configuration, Current amplification factor and characteristics of CB, CE &CC – Relation among α , β & γ Applications: Transistor as a switch.

UNIT V: FET & UJT [12 Hrs]

Types of FET – Construction of JFET – Operation – Characteristics of JFET –, Drain & Transfer Characteristics of JFET –JFET parameters - Comparison of JFET with BJTMOSFET – Working and Characteristics of Depletion type & Enhancement type MOSFET Construction of UJT – Characteristics of UJT- Relaxation Oscillator

COURSE OUTCOME

On completion of this course, the students will be able to

- Explain the structure of the basic electronic devices
- * Know the characteristics and operations of semiconductor devices.
- Use the special diodes for various applications.

TEXT BOOK:

1. R.S.Sedha, "A Text Book of Applied Electronics", S. Chand & Company Ltd, Revised I Edition, 2008.(Unit I-V)

REFERENCE BOOKS:

- 1. V. K. Metha, "Principles of Electronics", S. Chand and Company Ltd, 11th Edition, 2008.
- 2. Louis Nashelsky and Robert Boylestad, "Devices discrete and Integrated", PHI, I Edition, 2009.

Prepared by

Approved by

At

(Mr. K. Ashok Kumar)

(Dr. G. Senthilkumar)

Total Periods: 60 Hrs

Semester II Credit 3 Max. CIA -30 Marks CE -70 TOT =100

18EC202 PRACTICAL – II: ELECTRONIC DEVICES

COURSE OBJECTIVE

- ❖ To understand and experiment the basic parameters of electronic devices.
- To construct few applications using semiconductor devices.

Any 10 Experiments:

- 1. Band gap energy of Germanium
- 2. Band gap energy of Silicon
- 3. Temperature coefficient of junction diode
- 4. Junction diode characteristics
- 5. Clipping and Clamping circuits
- 6. Zener diode characteristics
- 7. Zener Diode as a voltage regulator
- 8. Characteristics of Schokkty diode
- 9. CE characteristics
- 10. CB characteristics
- 11. Stability factor of a transistor
- 12. Emitter follower
- 13. Characteristics of UJT
- 14. Relaxation Oscillator
- 15. FET characteristics

COURSE OUTCOME

On completion of this course, the students will be able to

- * Experiment the fundamental operations of the main semiconductor electronic devices.
- ❖ Design and construct electronic circuits using semiconductor devices.

Prepared by

(Mr. K. Ashok Kumar)

Approved by

II

5

CIA -50

CE -50

Semester

Credit

Max.

Marks

18ECP01 DIGITAL ELECTRONICS AND LAB

COURSE OBJECTIVE

To enable the students to know the number systems, codes, methods for simplifying Boolean expressions, logic gates and circuits.

	for simplifying Boolean expressions, logic gates and circuits.		TOT =100
*	To outline the formal procedures for the analysis and design of		
	combinational circuits and sequential circuits. It is also to encourage the s	tudents to l	earn the
	concepts of A/D, D/A conversions and memories.		

UNIT - I: NUMBER SYSTEMS AND LOGIC GATES

[9Hrs]

Digital Vs Analog Signals – Decimal, Binary, Octal, Hexa Decimal Number Systems – Conversions and Arithmetic operations – 1s and 2s Complements - BCD and Arithmetic Operations Logic Gates: AND, OR, NOT, EX-OR –IC Implementations – Universal gate (NAND, NOR) Graphical representation method: Karnaugh Map Method - Simplifications

PRACTICAL: 1. Logic gates

[6Hrs]

2. Universal gates

UNIT – II: BOOLEAN ALGEBRA AND CODES

[9Hrs]

Basic Operations with Boolean Variables – Boolean Function and Truth Table – Demorgan's Theorem – Simplifications. Codes: Weighted and Non Weighted Codes – Error Detection Code - Error Correction Code – EBCDIC Code – ASCII Code – Parity Advantages – Grey Code

PRACTICAL: 3.Demorgan's Theorem

[6Hrs]

4. Code Converters

UNIT - III: COMBINATIONAL LOGIC CIRCUITS

[9Hrs]

Arithmetic building block: Half adder – Full adder – Binary Parallel Adder - Half Subtractor - Full Subtractor –Binary Parallel Subtractor Multiplexer -Demultiplexer - Encoder - Decoder - Implementation through IC modules

PRACTICAL: 5. Half Adder & Full Adder

[12Hrs]

- 6. Half Subtractor & Full Subtractor
- 7. Encoder & Decoder
- 8. Multiplexer & De-multiplexer

UNIT - IV: SEQUENTIAL LOGIC CIRCUITS

[9 Hrs]

Flip Flops: RS, Clocked RS, JK, JK Master-Slave, D and T types. Shift Register: Serial – Parallel – Universal Shift registers Counters: Ring – Ripple – Synchronous – Up/Down –Mod 3 – Mod 5 – Decade counter

PRACTICAL: 9. Parity Generator & Checker

[6Hrs]

- 10. Flip flop
- 11. Shift Register & Ring counter
- 12. Binary & Decade Counter
- 13. BCD to Seven Segment Display

UNIT – V: D/A, A/D CONVERTERS

[9Hrs

DA/Converters: Weighted Resister and Binary Ladder –D/A Converter specifications: definition of Resolution and Accuracy. A/D Converters: Counter Ramp – Comparator/Flash – Dual Slope – Successive Approximation –A/D converter specifications.

PRACTICAL: 14. Digital to Analog Converter

15. Analog to Digital Converter

TotalPeriods: 75 Hrs

COURSE OUTCOME

On completion of this course, the students will be able to

- Realize different logic gates and analyzing the outputs.
- Demonstrate the knowledge of Boolean algebra including algebraic manipulation/simplification, and application of DeMorgan's theorems and Karnaugh map reduction method.
- ❖ Analyze and design the combinational and sequential logic circuits

TEXT BOOKS:

- 1. Roger L. Tokheim "Digital Electronics Principles and applications", Tata Mc Graw-Hill Pub.Co.Ltd, 8th Edition 2013 (Unit I, II, V)
- 2. S. Salivahanan & S. Arivazhagan "Digital Circuits and Design", Vikas pub House, 4^{th} Edition 2012 (Unit III, IV & V)

REFERENCE BOOKS:

- 1. Edition Albert P.Malvino, P. Leach, "Digital Principles and Applications", TMH,7th Ed 2010
- 2. Dr. B.R.Guptha & Vandana Singhal, "Digital Electronics", S.K.Kataria & Sons Millennium Ed, 2000
- 3. R.P.Jain "Modern Digital Electronics" Tata Mc Graw-Hill Pub.Co.Ltd, III Edition, 2012.

Prepared by

(Dr. V. Sidharthan)

Approved by

Sri Ramakrishna College of Arts and Science (Autonomous)

Coimbatore – 641006

VALUE EDUCATION

[A one Credit Course offered during Even Semester with effect from 2018-2019 Academic year and onwards]

Syllabus :: Batch 2018-19

(Common to all UG courses)

COURSE OBJECTIVE:

- To orient about the society, social life, integrity in personal and public
- To learn the concepts of human values and respect for others
- To provide in-depth understanding about moral awareness
- To inculcate a sense of socially responsible citizens.

Semester	
Credit	1
Max.	CIA – 100
Marks	TOT =100

UNIT - I VALUE EDUCATION & HUMAN EDUCATION

Value Education - Definition - relevance to present day - Concept of Human Values - Self Introspection - Self Esteem

UNIT – II SOCIETY & FAMILY VALUES

3

Structure and components of Society, Marriage and Family System – Anger Neutralization, Adjustability - Threats of family life.

UNIT - III ETHICS & LEADERSHIP QUALITIES

3

Ethical values: Ethics, Social Ethics, And Public Policy - Leadership qualities: Integrity, Character, And Courage - Personality development. Inter-culture Tolerance

UNIT - IV SOCIAL VALUES

3

Social Values, Faith, Service, Commitment and Decency - Fundamental Rights and Responsibilities of citizens

UNIT - V SOCIAL PROBLEMS AND ROLE OF STUDENTS

Social Problems: Definition - Poverty, Illiteracy, Unemployment, Exploitation, Obscenity, Immorality - Crimes and Online Crimes - Student unrest, Ragging and Peaceful Campus - Role of Students in tackling social problems

COURSE OUTCOME: Total Periods: 15

- Develop a sense of self-respect and respect for others
- Able to occupy one's own social space and help others live peacefully
- Develop scientific temper and logical reasoning and to apply in day to day life

REFERENCE BOOKS

- 1. Mani Jacob (Ed). 'Resource Book for Value Education', Institute for Value Education, New Delhi. 2002.
- 2. NCERT. "Value Education". Dharma Bharti National Institute of Peace and Value Education, Secunderabad, 2002.
- 3. Daniel and Selvamony. "Value Education Today Madras Christian College, Tambaram and ALACHE, New Delhi, 1990.
- 4. Ignacimuthu S. "Values for Life". Better Yourself Books, Mumbai, 1991.
- 5. M.M.M.Mascaronhas. Centre for Research Education Science and Training for Family Life Promotion Family Life Education, Bangalore, 1993.

Sri Ramakrishna College of Arts and Science (Autonomous)

Coimbatore – 641006

VALUE EDUCATION

[A one Credit Course offered during Even Semester with effect from 2018-2019 Academic year and onwards]

SCHEME OF EXAMINATION

(Continuous Internal Assessment:: April - 2019)

- 1. Value Education paper is a ONE CREDIT course.
- 2. The course will have only one Internal Examination (Model Examinations for 3 hours) at the end of the semester.
- 3. The examination pattern is descriptive type written examination.
- 4. The course carries a total marks of 100 out of which 80 marks will be allocated for written examination and 20 marks will be earmarked for activity.
- 5. The Passing minimum is 40 marks out of 100 marks.
- 6. The assessment will consist of two parts, as detailed below:

SN	Nature	Maximum Marks	Remarks
1.	Descriptive Examination	80 Marks (Section A: 10X4 = 40) (Section B: 5 X 8 - 40)	 Centralized Examination For 3 Hours Duration Descriptive type questions Model Examination only
2.	Activity	20 Marks	Activity (Paper presentation / Quiz/Panel Discussion / Participation in seminar/workshop /Assignment / Seminar/ Model Design) Individual Report to be submitted
			to the Value Education Teacher
	Total	100 Marks	

Course Coordinator Member Secretary Principal
Academic Council

02.05.2018

Sri Ramakrishna College of Arts and Science (Autonomous)

Coimbatore – 641006

VALUE EDUCATION

[A one Credit Course offered during Even Semester with effect from 2018-2019 Academic year and onwards]

SN	Unit	Proposed Activities	References
1.	Unit – I Value Education & Human Education	AssignmentsParticipation in seminar/workshop	https://www.slideshare.net/hitesh01 41/human-values-57703636 https://www.slideshare.net/vinay37 11/human-values-professional- ethics
2.	Unit – II Society & Family Values	 Assignment / Seminar Participation in seminar/workshop 	https://www.slideshare.net/khimber lybalbuena/society-and-culture-ppt https://www.slideshare.net/arunab/s ociety-and-culture-14735577
3.	Unit – III Ethics & Leadership Qualities	Participation in seminar/workshopPaper presentation	https://www.slideshare.net/komalsuryavanshi/leadership-qualities-8798588?qid=bde3fb0b-eaba-4d71-8031-69ba121eebd8&v=&b=&from_search=1
4.	Unit – IV Social Values	 Quiz Field Visit / Observation	https://www.slideshare.net/Parmind erSingh320/our-social- values?qid=72be767e-11fc-4fed- ac3f- 7d7525bf0fec&v=&b=&from_sear ch=1
5.	Unit – V Social Problems and Role of Students	Panel DiscussionAssignment / Seminar	https://www.slideshare.net/gowtha mchandrasekar2/social-ills-that-ail- the-indian-society?qid=d37ea10f- 9148-427a-b619- 6b29293d9120&v=&b=&from_sea rch=4

02.05.2018

Course Coordinator Dr.R.Thirumoorthi

Prof. & Head – Social Work Sri Ramakrishna College of Arts and Science (Autonomous)

18EC203 - MATHEMATICS - II

COURSE OBJECTIVE

To enable students to understand second order linear differential equations, numerical methods, special functions and complex numbers.

Semester	II
Credit	3
Paper	Allied
Type	
Max.	CIA -30
Marks	CE -70
	TOT =100
•	(9)

UNIT I DIFFERENTIAL EQUATION

Second Order linear differential equations with constant coefficients. Particular integrals of the form e^{kx} , x^k , sinkx, coskx only.

UNIT II NUMERICAL METHODS

(9)

Solving simultaneous equations – Gauss Elimination method, Gauss Jordan method, inverse of a matrix using Gauss Elimination method, Gauss Jacobi and Gauss Seidel methods..

UNIT III INTERPOLATION, NUMERICAL DIFFERENTIATION AND INTEGRATION (9)

Interpolation: Newton's forward and backward interpolation.

Numerical Differentiation : Newton's forward and backward formula to compute the derivative, Stirling's formula

Numerical Integration : Trapezoidal rule, Simpson's 1/3rd rule (No Derivation) – Simple problems.

UNIT IV SPECIAL FUNCTIONS

(9)

Beta and Gamma functions – definitions – Relationship between Beta and Gamma functions – Properties of Beta and Gamma functions – Simple problems.

UNIT V COMPLEX NUMBERS

(9)

Definition of complex numbers – Modulus – Amplitude form – Demorvie's Theorem (simple problems) – Expansion of $Sin(n\theta)$, $Cos(n\theta)$, $Sin^n(\theta)$, $Cos^n(\theta)$.

COURSE OUTCOME

After the completion of the course the students will be able to

- solve the Second Order linear differential equations.
- solve the problems using numerical methods.
- solve the problems on numerical differentiation and integration.
- gain knowledge about special functions.
- expand trigonometrical functions.

Total Periods: 45

* Note: The Question paper consists 20% Theory and 80% Problems

TEXT BOOKS

- Kandasamy. P, Thilagavathi. K "Mathematics for B.Sc Branch I Volume III",
 S. Chand and Company Ltd, New Delhi, 2004. (Unit I)
- 2. Dr. M. K. Venkataraman "Numerical methods in Science and Engineering", National Publishing Company, 5th edition 1999, Reprint 2013. (Unit II & III)
- 3. Dr. M.K. Venkataraman, "Higher Mathematics for Engineering and Science", National Publishing Company Unit IV Special Functions)
- 4. Dr. M.K. Venkataraman, "Engineering Mathematics Vol. I", National Publishing Company (Unit V Complex numbers)

Tangethip

HERITA

Mr.VASANTH KUMAR BONIFACE (COURSE COORDINATOR)

DR.HANNAH REVATHY F. (BOS CHAIRMAN)